
django-pwned-passwords
Documentation

Release 1.1

James Bennett

Mar 06, 2018





Contents

1 Documentation contents 3

Python Module Index 7

i



ii



django-pwned-passwords Documentation, Release 1.1

pwned-passwords-django provides helpers for working with the Pwned Passwords database of Have I Been Pwned?
in Django powered sites. Pwned Passwords is an extremely large database of passwords known to have been compro-
mised through data breaches, and is useful as a tool for rejecting common or weak passwords.

There are three main components to this:

• A password validator which checks the Pwned Passwords database

• A middleware which automatically checks certain request payloads against the Pwned Passwords database

• Code providing direct access to the Pwned Passwords database

All three use a secure, anonymized API which never transmits the password or its hash to any third party. To learn
more, see the FAQ.

Contents 1

https://haveibeenpwned.com/Passwords
https://www.djangoproject.com/


django-pwned-passwords Documentation, Release 1.1

2 Contents



CHAPTER 1

Documentation contents

1.1 Installation

pwned-passwords-django 1.1 supports Django 1.11 and Django 2.0, on Python versions supported by those versions
of Django:

• Django 1.11 supports Python 2.7, 3.4, 3.5, and 3.6.

• Django 2.0 supports Python 3.4, 3.5, and 3.6.

To install pwned-passwords-django, run:

pip install pwned-passwords-django

This will use pip, the standard Python package-installation tool. If you are using a supported version of Python, your
installation of Python came with pip bundled, but if it is missing, instructions are available for how to obtain and
install it.

If you don’t already have a supported version of Django installed, using pip to install pwned-passwords-django will
also install the latest supported version of Django.

1.2 Using the password validator

class pwned_passwords_django.validators.PwnedPasswordsValidator
Django’s auth system (located in django.contrib.auth) includes a configurable password-validation
framework with several built-in validators. pwned-passwords-django provides an additional validator which
checks the Pwned Passwords database. To enable it, set your AUTH_PASSWORD_VALIDATORS setting to
include pwned_passwords_django.validators.PwnedPasswordsValidator, like so:

AUTH_PASSWORD_VALIDATORS = [
{

'NAME': 'pwned_passwords_django.validators.PwnedPasswordsValidator',

3

https://pip.pypa.io/en/latest/installing.html
https://pip.pypa.io/en/latest/installing.html
https://docs.djangoproject.com/en/1.11/topics/auth/passwords/#module-django.contrib.auth.password_validation
https://docs.djangoproject.com/en/1.11/topics/auth/passwords/#module-django.contrib.auth.password_validation


django-pwned-passwords Documentation, Release 1.1

},
]

This will cause most high-level password-setting operations to check the Pwned Passwords database, and reject
any password found there. Specifically, password validators are applied:

• Whenever a user changes or resets their password with Django’s built-in auth views

• Whenever a new user is created via Django’s built-in UserCreationForm

• Whenever the createsuperuser or changepassword management commands are used

• Whenever an instance of the built-in Usermodel is saved after the instance’s set_password()method
has been called.

Keep in mind that validation is not run when code sets or changes a user’s password in other ways. If you
manipulate user passwords through means other than the high-level APIs listed above, you’ll need to manually
check passwords.

1.3 Using the middleware

class pwned_passwords_django.middleware.PwnedPasswordsMiddleware
To help catch situations where a potentially-compromised password is used in ways Django’s password valida-
tors won’t catch, pwned-passwords-django also provides a middleware which monitors every incoming HTTP
request for payloads which appear to contain passwords, and checks them against Pwned Passwords.

To enable the middleware, add pwned_passwords_django.middleware.
PwnedPasswordsMiddleware to your MIDDLEWARE setting. This will add a new attribute –
pwned_passwords – to each HttpRequest object. The request.pwned_passwords attribute
will be a dictionary.

Warning: Middleware order

The order of middleware classes in the Django MIDDLEWARE setting can be sensitive. In particular, any
middlewares which affect file upload handlers must be listed above middlewares which inspect request.
POST. Since this middleware has to inspect request.POST for likely passwords, it must be listed after
any middlewares which might change upload handlers. If you’re unsure what this means, just put this
middleware at the bottom of your MIDDLEWARE list.

The request.pwned_passwords dictionary will be empty if any of the following is true:

• The request method is not POST

• The request method is POST, but the payload does not appear to contain a password

• The request method is POST, and the payload appears to contain a password, but the password is not listed
as compromised in Pwned Passwords

If the request method is POST, and the payload appears to contain a password, and the password is listed
in Pwned Passwords, then request.pwned_passwords will contain a key corresponding to the key in
request.POST which appeared to contain a password, and the value associated with that key will be the
number of times that password appears in the Pwned Passwords database.

Here’s an example of how you might use Django’s message framework to indicate to a user that they’ve just
submitted a password that appears to be compromised:

4 Chapter 1. Documentation contents

https://docs.djangoproject.com/en/2.0/ref/contrib/messages/


django-pwned-passwords Documentation, Release 1.1

from django.contrib import messages

def some_view(request):
if request.method == 'POST' and request.pwned_passwords:

messages.warning(
request,
'You just entered a password which appears to be compromised!'

)

pwned-passwords-django uses a regular expression to guess which items in request.POST are likely to
be passwords. By default, it matches on any key in request.POST containing 'PASS' (case-insensitive),
which catches input names like 'password', 'passphrase', and so on. If you use something significantly
different than this for a password input name, specify it – as a raw string, not as a compiled regex object! – in
the setting PWNED_PASSWORDS_REGEX to tell the middleware what to look for.

1.4 Using the Pwned Passwords API directly

If the validator and middleware do not cover your needs, you can also directly check a password against Pwned
Passwords.

pwned_passwords_django.api.pwned_password(password)
Given a password, checks it against the Pwned Passwords database and returns a count of the number of times
that password occurs in the database, or None if it is not found.

Parameters password (str) – The password to check.

Return type int or None

1.5 Frequently asked questions

The following notes answer some common questions, and may be useful to you when using pwned-passwords-django.

1.5.1 What versions of Django and Python are supported?

Django 1.11 and 2.0 are supported, on any version of Python supported by those Django versions. This includes
Python 2.7 (only on Django 1.11), Python 3.4, Python 3.5, and Python 3.6.

1.5.2 Should I use the validator, the middleware, or the API directly?

It’s probably best to enable both the validator and the middleware. The validator by itself can catch many attempts to
set a user’s password to a known-compromised value, but cannot catch cases where a user already has a compromised
password and is continuing to use it. The middleware can catch that case, provided you’re checking the request.
pwned_passwords attribute in your view code.

Using the direct API should only be necessary in rare cases where neither the validator nor the middleware is sufficient.

1.4. Using the Pwned Passwords API directly 5



django-pwned-passwords Documentation, Release 1.1

1.5.3 How can this be secure? It’s sending passwords to some random site!

It’s not actually sending passwords to any other site, and that’s the magic.

You can read about this in the post announcing the launch of version 2 of Pwned Passwords, but the summary of how
it works is:

1. pwned-passwords-django hashes the password, and sends only the first five digits of the hexadecimal digest of
the hash to Pwned Passwords.

2. Pwned Passwords responds with a list of hash suffixes (all the digits of the hash except the first five) for every
entry in its database matching the submitted five-digit prefix.

3. pwned-passwords-django checks that list to see if the remainder of the password hash is present, and if so treats
the password as compromised.

This means that neither the password, nor the full hash of the password, is ever sent to any third-party site or service
by pwned-passwords-django.

Warning: You can still accidentally disclose passwords!

pwned-passwords-django uses an API that never discloses the password or its hash, but that doesn’t mean the rest
of your code or third-party libraries won’t.

You should take care to use Django’s tools for filtering sensitive information from tracebacks and error reports to
ensure that your logging and monitoring systems don’t accidentally log passwords. You should also be extremely
conservative about allowing third-party JavaScript to run on your site, and periodically audit all JavaScript you use;
remember that JavaScript can access anything your users enter on your site, and potentially do malicious things
with that information.

1.5.4 How am I allowed to use this code?

The pwned-passwords-django module is distributed under a three-clause BSD license. This is an open-source license
which grants you broad freedom to use, redistribute, modify and distribute modified versions of pwned-passwords-
django. For details, see the file LICENSE in the source distribution of pwned-passwords-django.

1.5.5 I found a bug or want to make an improvement!

The canonical development repository for pwned-passwords-django is online at <https://github.com/ubernostrum/
pwned-passwords-django>. Issues and pull requests can both be filed there.

See also:

• About Have I Been Pwned

• The Pwned Passwords range-search API

6 Chapter 1. Documentation contents

https://www.troyhunt.com/ive-just-launched-pwned-passwords-version-2/
https://docs.djangoproject.com/en/2.0/howto/error-reporting/#filtering-sensitive-information
http://opensource.org/licenses/BSD-3-Clause
https://github.com/ubernostrum/pwned-passwords-django
https://github.com/ubernostrum/pwned-passwords-django
https://haveibeenpwned.com/About
https://haveibeenpwned.com/API/v2#SearchingPwnedPasswordsByRange


Python Module Index

p
pwned_passwords_django.api, 5
pwned_passwords_django.middleware, 4
pwned_passwords_django.validators, 3

7



django-pwned-passwords Documentation, Release 1.1

8 Python Module Index



Index

P
pwned_password() (in module

pwned_passwords_django.api), 5
pwned_passwords_django.api (module), 5
pwned_passwords_django.middleware (module), 4
pwned_passwords_django.validators (module), 3
PwnedPasswordsMiddleware (class in

pwned_passwords_django.middleware), 4
PwnedPasswordsValidator (class in

pwned_passwords_django.validators), 3

9


	Documentation contents
	Python Module Index

