

pwned-passwords-django 1.0

pwned-passwords-django provides helpers for working with the Pwned
Passwords database of Have I Been Pwned? [https://haveibeenpwned.com/Passwords] in Django [https://www.djangoproject.com/] powered sites. Pwned Passwords is
an extremely large database of passwords known to have been
compromised through data breaches, and is useful as a tool for
rejecting common or weak passwords.

There are three main components to this:

	A password validator which checks the Pwned
Passwords database

	A middleware which automatically checks certain
request payloads against the Pwned Passwords database

	Code providing direct access to the Pwned Passwords
database

All three use a secure, anonymized API which never transmits the
password or its hash to any third party. To learn more, see the
FAQ.

Documentation contents

	Installation

	Using the password validator

	Using the middleware

	Using the Pwned Passwords API directly

	Frequently asked questions

See also

	About Have I Been Pwned [https://haveibeenpwned.com/About]

	The Pwned Passwords range-search API [https://haveibeenpwned.com/API/v2#SearchingPwnedPasswordsByRange]

Installation

pwned-passwords-django 1.0 supports Django 1.11 and Django 2.0,
on Python versions supported by those versions of Django:

	Django 1.11 supports Python 2.7, 3.4, 3.5, and 3.6.

	Django 2.0 supports Python 3.4, 3.5, and 3.6.

To install pwned-passwords-django, run:

pip install pwned-passwords-django

This will use pip, the standard Python package-installation
tool. If you are using a supported version of Python, your
installation of Python came with pip bundled, but if it is
missing, instructions are available for how to obtain and install it [https://pip.pypa.io/en/latest/installing.html].

If you don’t already have a supported version of Django installed,
using pip to install pwned-passwords-django will also install the
latest supported version of Django.

Using the password validator

	
class pwned_passwords_django.validators.PwnedPasswordsValidator

	Django’s auth system (located in django.contrib.auth) includes
a configurable password-validation framework [https://docs.djangoproject.com/en/1.11/topics/auth/passwords/#module-django.contrib.auth.password_validation]
with several built-in validators. pwned-passwords-django provides
an additional validator which checks the Pwned Passwords
database. To enable it, set your AUTH_PASSWORD_VALIDATORS
setting to include
pwned_passwords_django.validators.PwnedPasswordsValidator, like
so:

AUTH_PASSWORD_VALIDATORS = [
 {
 'NAME': 'pwned_passwords_django.validators.PwnedPasswordsValidator',
 },
]

This will cause most high-level password-setting operations to
check the Pwned Passwords database, and reject any password found
there. Specifically, password validators are applied:

	Whenever a user changes or resets their password with Django’s
built-in auth views

	Whenever a new user is created via Django’s built-in
UserCreationForm

	Whenever the createsuperuser or changepassword management
commands are used

	Whenever an instance of the built-in User model is saved after
the instance’s set_password() method has been called.

Keep in mind that validation is not run when code sets or
changes a user’s password in other ways. If you manipulate user
passwords through means other than the high-level APIs listed
above, you’ll need to manually check passwords.

Using the middleware

	
class pwned_passwords_django.middleware.PwnedPasswordsMiddleware

	To help catch situations where a potentially-compromised password
is used in ways Django’s password validators won’t catch,
pwned-passwords-django also provides a middleware which monitors
every incoming HTTP request for payloads which appear to contain
passwords, and checks them against Pwned Passwords.

To enable the middleware, add
pwned_passwords_django.middleware.PwnedPasswordsMiddleware to
your MIDDLEWARE setting. This will add a new attribute –
pwned_passwords – to each HttpRequest object. The
request.pwned_passwords attribute will be a dictionary.

Warning

Middleware order

The order of middleware classes in the Django MIDDLEWARE
setting can be sensitive. In particular, any middlewares which
affect file upload handlers must be listed above middlewares
which inspect request.POST. Since this middleware has to
inspect request.POST for likely passwords, it must be listed
after any middlewares which might change upload handlers. If
you’re unsure what this means, just put this middleware at the
bottom of your MIDDLEWARE list.

The request.pwned_passwords dictionary will be empty if any
of the following is true:

	The request method is not POST

	The request method is POST, but the payload does not appear
to contain a password

	The request method is POST, and the payload appears to
contain a password, but the password is not listed as compromised
in Pwned Passwords

If the request method is POST, and the payload appears to
contain a password, and the password is listed in Pwned Passwords,
then request.pwned_passwords will contain a key corresponding
to the key in request.POST which appeared to contain a
password, and the value associated with that key will be the number
of times that password appears in the Pwned Passwords database.

Here’s an example of how you might use Django’s message framework [https://docs.djangoproject.com/en/2.0/ref/contrib/messages/] to
indicate to a user that they’ve just submitted a password that
appears to be compromised:

from django.contrib import messages

def some_view(request):
 if request.method == 'POST' and request.pwned_passwords:
 messages.warning(
 request,
 'You just entered a password which appears to be compromised!'
)

pwned-passwords-django uses a regular expression to guess which
items in request.POST are likely to be passwords. By default,
it matches on any key in request.POST containing 'PASS'
(case-insensitive), which catches input names like 'password',
'passphrase', and so on. If you use something significantly
different than this for a password input name, specify it – as a
raw string, not as a compiled regex object! – in the setting
PWNED_PASSWORDS_REGEX to tell the middleware what to look for.

Using the Pwned Passwords API directly

If the validator and middleware do not cover your needs, you can also
directly check a password against Pwned Passwords.

	
pwned_passwords_django.api.pwned_password(password)

	Given a password, checks it against the Pwned Passwords database
and returns a count of the number of times that password occurs in
the database, or None if it is not found.

	Parameters

	password (str) – The password to check.

	Return type

	int or None

Frequently asked questions

The following notes answer some common questions, and may be useful to
you when using pwned-passwords-django.

What versions of Django and Python are supported?

Django 1.11 and 2.0 are supported, on any version of Python supported
by those Django versions. This includes Python 2.7 (only on Django
1.11), Python 3.4, Python 3.5, and Python 3.6.

Should I use the validator, the middleware, or the API directly?

It’s probably best to enable both the validator and the
middleware. The validator by itself can catch many
attempts to set a user’s password to a known-compromised value, but
cannot catch cases where a user already has a compromised password and
is continuing to use it. The middleware can catch
that case, provided you’re checking the request.pwned_passwords
attribute in your view code.

Using the direct API should only be necessary in rare
cases where neither the validator nor the middleware is
sufficient.

How can this be secure? It’s sending passwords to some random site!

It’s not actually sending passwords to any other site, and that’s
the magic.

You can read about this in the post announcing the launch of version
2 of Pwned Passwords [https://www.troyhunt.com/ive-just-launched-pwned-passwords-version-2/],
but the summary of how it works is:

	pwned-passwords-django hashes the password, and sends only the first
five digits of the hexadecimal digest of the hash to Pwned Passwords.

	Pwned Passwords responds with a list of hash suffixes (all the
digits of the hash except the first five) for every entry in its
database matching the submitted five-digit prefix.

	pwned-passwords-django checks that list to see if the remainder of
the password hash is present, and if so treats the password as
compromised.

This means that neither the password, nor the full hash of the
password, is ever sent to any third-party site or service by
pwned-passwords-django.

Warning

You can still accidentally disclose passwords!

pwned-passwords-django uses an API that never discloses the
password or its hash, but that doesn’t mean the rest of your code
or third-party libraries won’t.

You should take care to use Django’s tools for filtering sensitive
information from tracebacks and error reports [https://docs.djangoproject.com/en/2.0/howto/error-reporting/#filtering-sensitive-information]
to ensure that your logging and monitoring systems don’t
accidentally log passwords. You should also be extremely
conservative about allowing third-party JavaScript to run on your
site, and periodically audit all JavaScript you use; remember that
JavaScript can access anything your users enter on your site, and
potentially do malicious things with that information.

How am I allowed to use this code?

The pwned-passwords-django module is distributed under a three-clause
BSD license [http://opensource.org/licenses/BSD-3-Clause]. This is
an open-source license which grants you broad freedom to use,
redistribute, modify and distribute modified versions of
pwned-passwords-django. For details, see the file LICENSE in the
source distribution of pwned-passwords-django.

I found a bug or want to make an improvement!

The canonical development repository for pwned-passwords-django is
online at
<https://github.com/ubernostrum/pwned-passwords-django>. Issues and
pull requests can both be filed there.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pwned_passwords_django	

 	
 	
 pwned_passwords_django.api	

 	
 	
 pwned_passwords_django.middleware	

 	
 	
 pwned_passwords_django.validators	

Index

 P

P

 	
 	pwned_password() (in module pwned_passwords_django.api)

 	pwned_passwords_django.api (module)

 	pwned_passwords_django.middleware (module)

 	
 	pwned_passwords_django.validators (module)

 	PwnedPasswordsMiddleware (class in pwned_passwords_django.middleware)

 	PwnedPasswordsValidator (class in pwned_passwords_django.validators)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 pwned-passwords-django 1.0

 		
 Installation

 		
 Using the password validator

 		
 Using the middleware

 		
 Using the Pwned Passwords API directly

 		
 Frequently asked questions

 		
 What versions of Django and Python are supported?

 		
 Should I use the validator, the middleware, or the API directly?

 		
 How can this be secure? It’s sending passwords to some random site!

 		
 How am I allowed to use this code?

 		
 I found a bug or want to make an improvement!

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

